scholarly journals Convectively Generated Internal Gravity Waves in the Lower Atmosphere of Venus. Part II: Mean Wind Shear and Wave–Mean Flow Interaction

2000 ◽  
Vol 57 (2) ◽  
pp. 200-215 ◽  
Author(s):  
R. David Baker ◽  
Gerald Schubert ◽  
Philip W. Jones
2014 ◽  
Vol 32 (2) ◽  
pp. 181-186 ◽  
Author(s):  
O. Onishchenko ◽  
O. Pokhotelov ◽  
W. Horton ◽  
A. Smolyakov ◽  
T. Kaladze ◽  
...  

Abstract. The effect of the wind shear on the roll structures of nonlinear internal gravity waves (IGWs) in the Earth's atmosphere with the finite vertical temperature gradients is investigated. A closed system of equations is derived for the nonlinear dynamics of the IGWs in the presence of temperature gradients and sheared wind. The solution in the form of rolls has been obtained. The new condition for the existence of such structures was found by taking into account the roll spatial scale, the horizontal speed and wind shear parameters. We have shown that the roll structures can exist in a dynamically unstable atmosphere.


2018 ◽  
Vol 75 (7) ◽  
pp. 2199-2216 ◽  
Author(s):  
A. A. M. Sayed ◽  
L. J. Campbell

Abstract A two-dimensional two-layer mathematical model is described representing internal gravity waves and convection generated by a thermal forcing in the lower atmosphere. The model consists of an upper layer with stable stratification, a lower layer with unstable stratification, and a thermal forcing in the form of a nonhomogeneous term in the energy conservation equation. Exact analytical solutions are derived for some simple configurations. Depending on the vertical location and depth of the thermal forcing, the model can be used to represent different configurations in which gravity waves are generated by diabatic heating. When the thermal forcing is centered in the lower layer, convective cells are generated in the lower layer, and gravity waves are forced and propagate upward from the interface between the two layers. When the thermal forcing is centered at the interface, the convection in the lower layer is weaker, and gravity waves are forced by the direct effect of the thermal forcing in the upper layer and the influence of the convective cells below. Steady-amplitude solutions for the vertical profile of the gravity waves and convection are derived and generalized to include cases where there is a spectrum of horizontal wavenumbers or vertical wavenumbers or frequencies present.


1971 ◽  
Vol 50 (3) ◽  
pp. 545-563 ◽  
Author(s):  
R. J. Breeding

The behaviour of internal gravity waves near a critical level is investigated by means of a transient two dimensional finite difference model. All the important non-linear, viscosity and thermal conduction terms are included, but the rotational terms are omitted and the perturbations are assumed to be incompressible. For Richardson numbers greater than 2·0 the interaction of the incident wave and the mean flow is largely as predicted by the linear theory–very little of the incident wave penetrates through the critical level and almost all of the wave's energy and momentum are absorbed by changes in the original wind. However, these changes in the wind are centred above the critical level, so that the change in the wind has only a small effect on the height of the critical level. For Richardson numbers less than 2·0 and greater than 0·25 a significant fraction of the incident wave is reflected, part of which could have been predicted by the linear theory. For these stable Richardson numbers a steady state is apparently reached where the maximum wind change continues to grow slowly, but the minimum Richardson number and wave magnitudes remain constant. This condition represents a balance between the diffusion outward of the added momentum and the rate at which it is absorbed. For Richardson numbers less than 0·25, over-reflexion, predicted from the linear theory, is observed, but because the system is dynamically unstable no over-reflecting steady state is ever reached.


2020 ◽  
Author(s):  
Georg Sebastian Voelker ◽  
Triantaphyllos Akylas ◽  
Ulrich Achatz

<p>Internal gravity waves are a well known mechanism of energy transport in stratified fluids such as the atmosphere and the ocean. Their abundance and importance for various geophysical processes like ocean mixing and momentum deposition in atmospheric jets are widely accepted. While resonant wave-wave interactions of monochromatic disturbances have received intensive study, little work has been done on triad interactions between wave trains that are modulated by a variable mean flow.</p><p>Using the method of multiple scale asymptotics we consider a weakly non-linear Boussinesq WKBJ theory for interacting gravity wave trains propagating through a finite amplitude background flow. Consequently the wave trains are allowed to spectrally pass through resonance conditions and exchange energy when sufficiently close to resonance. We find a global optimal threshold for the deviation from resonance and derive a corresponding parametrization for the triad interaction applicable to ray tracing schemes.</p><p>We test the theory with idealized simulations in which two wave trains generate a third by passing through resonance in a sinusoidal background shear flow with varying vertical scales. Comparing WKBJ simulations with wave resolving large eddy simulations we find qualitative and quantitative agreement. Furthermore we assess the impact of the strength of the modulation as well as the effect of the wave amplitudes on the energy exchange between the interacting wave triad.</p>


2020 ◽  
Vol 77 (10) ◽  
pp. 3601-3618
Author(s):  
B. Quinn ◽  
C. Eden ◽  
D. Olbers

AbstractThe model Internal Wave Dissipation, Energy and Mixing (IDEMIX) presents a novel way of parameterizing internal gravity waves in the atmosphere. IDEMIX is based on the spectral energy balance of the wave field and has previously been successfully developed as a model for diapycnal diffusivity, induced by internal gravity wave breaking in oceans. Applied here for the first time to atmospheric gravity waves, integration of the energy balance equation for a continuous wave field of a given spectrum, results in prognostic equations for the energy density of eastward and westward gravity waves. It includes their interaction with the mean flow, allowing for an evolving and local description of momentum flux and gravity wave drag. A saturation mechanism maintains the wave field within convective stability limits, and a closure for critical-layer effects controls how much wave flux propagates from the troposphere into the middle atmosphere. Offline comparisons to a traditional parameterization reveal increases in the wave momentum flux in the middle atmosphere due to the mean-flow interaction, resulting in a greater gravity wave drag at lower altitudes. Preliminary validation against observational data show good agreement with momentum fluxes.


1997 ◽  
Vol 15 (12) ◽  
pp. 1570-1580 ◽  
Author(s):  
N. M. Gavrilov

Abstract. The mechanism of generation of internal gravity waves (IGW) by mesoscale turbulence in the troposphere is considered. The equations that describe the generation of waves by hydrodynamic sources of momentum, heat and mass are derived. Calculations of amplitudes, wave energy fluxes, turbulent viscosities, and accelerations of the mean flow caused by IGWs generated in the troposphere are made. A comparison of different mechanisms of turbulence production in the atmosphere by IGWs shows that the nonlinear destruction of a primary IGW into a spectrum of secondary waves may provide additional dissipation of nonsaturated stable waves. The mean wind increases both the effectiveness of generation and dissipation of IGWs propagating in the direction of the wind. Competition of both effects may lead to the dominance of IGWs propagating upstream at long distances from tropospheric wave sources, and to the formation of eastward wave accelerations in summer and westward accelerations in winter near the mesopause.


1969 ◽  
Vol 36 (4) ◽  
pp. 785-803 ◽  
Author(s):  
Francis P. Bretherton

A train of internal gravity waves in a stratified liquid exerts a stress on the liquid and induces changes in the mean motion of second order in the wave amplitude. In those circumstances in which the concept of a slowly varying quasi-sinusoidal wave train is consistent, the mean velocity is almost horizontal and is determined to a first approximation irrespective of the vertical forces exerted by the waves. The sum of the mean flow kinetic energy and the wave energy is then conserved. The circulation around a horizontal circuit moving with the mean velocity is increased in the presence of waves according to a simple formula. The flow pattern is obtained around two- and three-dimensional wave packets propagating into a liquid at rest and the results are generalized for any basic state of motion in which the internal Froude number is small. Momentum can be associated with a wave packet equal to the horizontal wave-number times the wave energy divided by the intrinsic frequency.


Sign in / Sign up

Export Citation Format

Share Document